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Abstract

For a domain D ⊂ Rn ,n ≥ 2 , we consider the class of all
K - quasiconformal maps of D onto itself with identity
boundary values and Teichmüller’s problem in this context.
Given a map f of this class and a point x ∈ D , we show that
the maximal dilatation of f has a lower bound in terms of
the distance of x and f (x) in the distance ratio metric. For
instance, convex domains, bounded domains and domains
with uniformly perfect boundaries are studied.

M. Vuorinen and X. Zhang, Distortion of quasiconformal
mappings with identity boundary values. arXiv:1203.0427v1
[math.CV]
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Teichmüller’s classical mapping problem

Finding a lower bound for the maximal dilatation of a QC
self-homeo. which keeps the boundary pointwise fixed, and
maps a given point of the domain to another given point of the
domain.

Let D be a proper subdomain of Rn (n ≥ 2), and let

IdK (∂D) = {f : Rn → Rn is K−quasiconformal : f (x) = x , ∀x ∈ Rn\D}.

O. Teichmüller, 1944

Let D = R2 \ {0,e1}, f ∈ IdK (∂D). Then for all x ∈ D,

sD(x , f (x)) ≤ log K

where sD is the hyperbolic metric of D = R2 \ {0,e1}.
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The above result may be considered as a stability result since
f (x) is contained in the closure of the hyperbolic ball
BsD (x , log K ) with the radius tending to 0 as K → 1.

Reshetnyak’s stability theory [R]:
Liouville’s theorem
estimate of the distance of a K -qc map from the "nearest"
Möbius transformation in a suitable norm. normal family,
lack of explicit estimates.
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Asymptotically sharp explicit bounds for the convergence of
K -qc maps to the case K = 1 . There are very few of these in
the literature. The key results are

Sharp dimension-free Schwarz lemma [AVV,1986]

Let f : Bn → fBn be K−quasiconformal with f (0) = 0 and
fBn ⊂ Bn. Then

|f (x)| ≤ λ1−α
n |x |α ≤ 21−1/K K |x |1/K

for x ∈ Bn, where α = K 1/(1−n) and λn is constant depending
only on n. For each n ≥ 2 the inequality is sharp for K = 1.
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Let ηK ,n(t) = sup{|f (x)| : |x | = t , f ∈ QCK (Rn), f (e1) = e1} for
t > 0, where e1 = (1,0, . . . ,0).

Explicit estimate of the function of quasisymmetry of K -QC
maps [Vu1, 1990]
The following inequalities hold for n ≥ 2 and K > 1:

ηK ,n(1) ≤ exp{6(K + 1)2
√

K − 1};
ηK ,n(t) ≤ ηK ,n(1)ϕK ,n(t), 0 ≤ t ≤ 1,
ηK ,n(t) ≤ ηK ,n(1)ϕ1/K ,n(1/t), t ≥ 1.

Typically proofs make use of conformal invariants and moduli of
curve families and sometimes involve special functions.
Ideologically, our results follow the approach based on explicit
asymptotic sharp estimates.
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The hyperbolic metric ρBn (x , y) on Bn:

tanh2 ρBn (x , y)

2
=

|x − y |2

|x − y |2 + (1− |x |2)(1− |y |2)
.

The quasihyperbolic metric kD:

kD(x , y) = inf
γ∈Γ

∫
γ

1
d(z)

|dz|, x , y ∈ D,

where Γ is the family of all rectifiable curves in D joining x and
y , and d(z) = d(z, ∂D) is the Euclidean distance between z
and the boundary of D.
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The distance-ratio metric or j−metric:

jD(x , y) = log
(

1 +
|x − y |

min{d(x),d(y)}

)
, x , y ∈ D.

jD(x , y) ≤ kD(x , y)

uniform domain D: ∃U = U(D) ≥ 1 s.t. kD(x , y) ≤ U jD(x , y) for
all x , y ∈ D.
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The Grötzsch ring domain RG,n(s), s > 1, and the Teichmüller
ring domain RT ,n(t), t > 0, are doubly connected domains with
complementary components (Bn, [se1,∞) and
([−e1,0], [te1,∞)), respectively. For their capacities we write{

γn(s) = capRG,n(s) = M(∆(Bn, [se1,∞])),
τn(t) = capRT ,n(t) = M(∆([−e1,0], [te1,∞])).

Functional identity

γn(s) = 2n−1τn(s2 − 1).
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Figure: Grötzsch and Teichmüller rings
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ϕK ,n(r) =
1

γ−1
n (Kγn(1/r))

, 0 < r < 1.

ϕK ,n(0) = 0, ϕK ,n(1) = 1

rα ≤ ϕK ,n(r) ≤ λ1−α
n rα ≤ 21−1/K Krα, α = K 1/(1−n) ,

21−K K−K rβ ≤ λ1−β
n rβ ≤ ϕ1/K ,n(r) ≤ rβ, β = 1/α,

where K ≥ 1, r ∈ (0,1) , and the constant λn ∈ [4,2en−1) is the
so-called Grötzsch ring constant.
For n ≥ 2, t ∈ (0,∞), K > 0, we denote

ηK ,n(t) = τ−1
n

(
1
K
τn(t)

)
=

1− ϕ1/K ,n(1/
√

1 + t)2

ϕ1/K ,n(1/
√

1 + t)2
.
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Let α > 0 and assume that D ⊂ Rn is a closed set containing at
least two points. Then D is s−uniformly perfect if there is no
ring domain separating D with the modulus greater than s.

Aseev, Sibrian Math J, 1999
Suppose that s > 0 and that s−uniformly perfect sets E0 and
E1 meets each component of the complement of the spherical
ring D = {x : r1 < |x − x0| < r2} ⊂ Rn with the following relation
between the radii

r2/r1 > 1 + 2es.

Then
cap(E0,E1; D) ≥ C log

r2

r1
,

where the constant C > 0 depends only on s and the
dimension n of the space.
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J. Krzyż, 1968: D = B2

G.D. Anderson, M.K. Vamanamurthy, 1979:
D = Bn, n ≥ 3, (additional symmetry hypothesis)
V. Manojlović, M. Vuorinen, 2011: D = Bn, n ≥ 3

[MV], D = Bn, n ≥ 3
If f ∈ IdK (∂Bn), then for all x ∈ Bn,

ρBn (x , f (x)) ≤ log
(

1 +
1− 2a

a

)
, a = ϕ1/K ,n(1/

√
2)2,

where ρBn is the hyperbolic metric of the unit ball, and ϕK ,n is as
in .
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Vuorinen, 1984 [Vu2]: D =uniform domains with connected
boundary

K ≥ c1(n,D)kD(x , f (x))n

whenever kD(x , f (x)) exceeds a bound depending only on n
and D. Here c1(n,D) is a positive constant depending only on n
and D.

As pointed out in [Vu2], it is not true for n ≥ 3 that
kD(x , f (x)) > 0 implies K > 1 . Indeed, let
X = {(x ,0,0) : x ∈ R} be the x1-axis, let D = R3 \ X , and let
f : D → D be a rotation around the x1-axis with
f (x) = (0,−1,0), x = (0,1,0) . Then f is conformal, i.e. K = 1 ,
f keeps the x1-axis X = ∂D pointwise fixed, and D is a uniform
domain with connected boundary X and kD(x , f (x)) = π .
Clearly, for this domain c1(3,D) ≤ 1/π3 .
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For convex domains we can get an improved distortion theorem
which shows that for each x ∈ D, the requirement f (x) 6= x
implies the maximal dilatation of f to be greater than 1. This
kind of behavior also holds for bounded domains.

Convex domains
Let D ( Rn be a convex domain and f ∈ IdK (∂D). Then for all
x ∈ D

jD(x , f (x)) ≤ log
(

1 +
√

c2(n,K )2 − 1
)
≤ log

(
1 +

√
1− 2a

a

)
where c2(n,K ) = min{ηK ,n(1), η1/K ,n(1)−1} with c2(n,K )→ 1
as K → 1, and a = ϕ1/K ,n(1/

√
2)2 → 1/2 as K → 1. Here jD is

the distance ratio metric in D.
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Proof. Write y = f (x). We may assume d(x) ≤ d(y) since
f−1 ∈ IdK (∂D) also. Fix z ∈ ∂D such that d(x) = |x − z|. For
t > 0, write Ft = {z + u(z − x) : u ≥ t}. Let Γt = ∆([x , z],Ft ) be
the family of all curves in Rn joining [x , z] to Ft .
Γ′t = f (Γt ) = ∆(f ([x , z]),Ft ). It follows that

τn

(
t |x − z|
|y − z|

)
≤ M(Γ′t ) ≤ K M(Γt ) = K τn(t).

Setting t = 1, we have

|y − z|
|x − z|

≤ 1
τ−1(K τn(1))

=
1

η1/K ,n(1)
,
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and setting t = |y − z|/|x − z|,
|y − z|
|x − z|

≤ τ−1
(
τn(1)

K

)
= ηK ,n(1).

Hence it follows that
|y − z|
|x − z|

≤ min{ηK ,n(1),
1

η1/K ,n(1)
} = c2(n,K ).

Since D is convex, it is easy to see that
|y − z|2 ≥ |x − y |2 + |x − z|2, and hence

|x − y |
|x − z|

≤

√(
|y − z|
|x − z|

)2

− 1 .

The definition of the j−metric, together with the last two
inequalities yields

jD(x , y) ≤ log
(

1 +
√

c2(n,K )2 − 1
)
,

as desired.
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For K close to 1, the above inequality can be simplified further.

Convex domain, K close to 1
Let D ( Rn be a convex domain and

Kn =

(
1 +

log 3
2(n − 1) + log 8

)n−1

∈ [K2,
√

3), K2 ≈ 1.2693,

and let K ∈ (1,Kn] and f ∈ IdK (∂D). Then for all x ∈ D

jD(x , f (x)) ≤ 4
√

K − 1.
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By using Grötzsch’s extremal ring we can get a slightly
improved bounds for the case of unit ball and convex domains.

The unit ball
If f ∈ IdK (∂Bn), then for all x ∈ Bn,

ρBn (x , f (x)) ≤ log
2ϕK ,n(1/3)

1− ϕK ,n(1/3)
.

Convex domains
Let D ( Rn be a convex domain and f ∈ IdK (∂D). Then for all
x ∈ D

jD(x , f (x)) ≤ log

1 +

√(
2ϕK ,n(1/3)

1− ϕK ,n(1/3)

)2

− 1

 .
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Bounded domain
Let D be a bounded domain in Rn, and f ∈ IdK (∂D). Then for
all x ∈ D

|f (x)− x | ≤ diam(D) tanh
(

1
2

log
1− a

a

)
, a = ϕ1/K ,n(1/

√
2)2 .

Proof. For x ∈ D, D ⊂ Bn(x , diam(D)) since D is bounded. Let
g(w) = (w − x)/diam(D), then h = g ◦ f ◦ g−1 ∈ IdK (∂Bn). By
MV’s theorem,

ρBn

(
f (x)− x
diam(D)

,0
)

= ρBn (h(0),0) ≤ log
1− a

a
,

|f (x)− x | ≤ diam(D) tanh
(

1
2

log
1− a

a

)
since ρBn (z,0) = 2arctanh|z| for z ∈ Bn.
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The following theorem concerns the Hölder continuity of
quasiconformal self mappings in IdK (∂Bn)

Hölder continuity

If f ∈ IdK (∂Bn), then for all x , y ∈ Bn

|f (x)− f (y)| ≤ M1(n,K )|x − y |α, α = K 1/(1−n)

where M1(n,K ) = λ1−α
n C(α) and

C(α) = 21−αα−α/2(1− α)(α−1)/2 , with M1(n,K )→ 1 when
K → 1 , and λn ∈ [4,2en−1) is the Grötzsch ring constant.
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Proof. For R > 1 let h(x) = x/R, then
g := h ◦ f ◦ h−1 : Bn → Bn is a K -quasiconformal mapping. By
applying the following well-known inequality

tanh
ρ(f (x), f (y))

2
≤ ϕK ,n

(
tanh

ρ(x , y)

2

)
and the estimate for the hyperbolic metric

|x − y |
1 + |x ||y |

≤ tanh
ρ(x , y)

2
≤ |x − y |

1− |x ||y |
to the mapping g and points x/R, y/R for x , y ∈ Bn, we have

|f (x)/R − f (y)/R|
1 + |f (x)||f (y)|/R2 ≤ ϕK ,n

(
|x/R − y/R|
1− |x ||y |/R2

)
.

Hence

|f (x)− f (y)| ≤ λ1−α
n

R + |f (x)||f (y)|/R
(R − |x ||y |/R)α

|x − y |α

≤ λ1−α
n A(R)|x − y |α. (1)
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where

A(R) =
R + R−1

(R − R−1)α
.

It is easy to check that A(1+) =∞ = A(∞) and

R0 =

√
1 +
√
α

1−
√
α

is the unique value of R in the interval (1,∞) such that
A′(R) = 0. Hence we have

C(α) := min
1<R<∞

A(R) = A(R0) = 21−αα−α/2(1− α)(α−1)/2.

Since the inequality (1) holds for all R > 1, we get

|f (x)− f (y)| ≤ λ1−α
n C(α)|x − y |α.

It is easy to see that C(1−) = 1, and hence
M1(n,K ) = λ1−α

n C(α)→ 1 as K → 1.
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